

## Multi-Tech Platform

Manufacturing System with Liquid Metal Jetting, Laser Directed Energy Deposition and CNC Machining.

Liquid metal jetting (LMJ) and laser directed energy deposition (LDED) are two additive processes desired within a hybrid manufacturing system as both processes use low-cost COTS welding wire to print near-net shape parts with 100% material utilization. With LMJ we unlock high resolution capability while with LDED we unlock high deposition rate capability. In addition, multi-material capability is enabled by having two additive processing heads within a single system. The subtractive process within a hybrid manufacturing system provides post-machining capabilities to achieve desired surface finish and tolerances for parts printed using the two additive processes.

| Parameter                 | Laser DED      | LMJ            | CNC Machining      |
|---------------------------|----------------|----------------|--------------------|
| Maximum Laser Power       | 6 kW           | -              | Build volume       |
| Laser Type                | Fiber laser    | -              | 40" x 20" x 25"    |
| Laser Wavelength          | 1080 nm        | -              | Max. Spindle Speed |
| Layer Thickness           | 0.8 – 1.2 mm   | 0.24 mm (min.) | 12000 rpm          |
| Maximum Deposition Rate   | 4 kg/hr        | 0.5 kg/hr      | Max. Cutting Speed |
| Wire Feed Stock           | 0.8 – 1.2 mm Φ | 1.6 mm Φ       | 21.2 m/min         |
| Resolution                | 2.5 mm         | 0.5 mm         |                    |
| Process control Closed Up | Yes            | Yes            |                    |

| Materials Ir   | on, nickel, aluminum, and copper alloys |
|----------------|-----------------------------------------|
| Shielding      | Localized (Argon or Nitrogen)           |
| Cooling        | Active water cooling                    |
| Slicing softwo | are ADDITEC                             |
| Motion axes    | 3                                       |

## For more information visit ADDITEC3D.COM

\*These specifications are subject to change without notice. © 2023 ADDiTEC, Additive Technologies LLC. All rights reserved.



